Copy-move forgery is one of the most commonly used forgeries in digital images, in which some regions of a digital image is coped and pasted to another part of the image with the aim of concealing certain features or objects in the original images. In this paper, a novel copy-move forgery detection scheme in digital images is proposed. It treats the digital images as high dimensional data and uses the intrinsic dimension estimation method first to segment the image and then identify the copy-move forgeries in the image regions with the same texture. Experimental results show that the proposed method is.efficient and robust to retouching and many other operations.such as lossy compression, blurring, filtering, etc
برای تشخیص در این مقاله یک طرح ردیابی تشخیص جعل کپی-انتقال در تصاویر دیجیتال ارائه شده است. تصاویردیجیتال را به عنوان داده های با ابعاد بزرگ پردازش می کند و برای اولین بار از روش برآورد ابعاد ذاتی برای تفکیک تصویر استفاده می کند و سپس شناسایی جعل کپی-انتقال در مناطق تصویر با همان بافت صورت می گیرد. نتایج تجربی نشان می دهد که روش پیشنهادی کارآیی قوی برای رتوش و بسیاری از عملیات دیگر مانند فشرده سازی از بین رفته، تار شدن، فیلتر کردن و غیره دارد.
برای ایجاد جعل طبیعی و غیر قابل تشخیص باید عوامل زیادی در نظر گرفته شود از جمله شرایط روشنایی، بافت و غیره. روش تخمین زدن و برآورد ابعاد محلی به این صورت است:
1) ارزیابی ابعاد با استفاده از الگوریتم Kنزدیکترین
2) قبول کردن الگوریتم K-NN برای برآورد ابعاد محلی : الگوریتم K-NN در اصل برای برآورد ابعاد جهانی استفاده می شود با این حال می توان آن را برای برآورد ابعاد محلی، مانند ابعاد ذاتی نمونه با محدود کردن مجوعه داده ها به محله کوچک نمونه اتخاذ کرد. در ابتدا هر نمونه در مجموعه داده به خوشه ای تعلق دارد و سپس می توان از خوشه ها با پیدا کردن همسایگان K از نمونه گسترش داد. بر اساس این خوشه ها، الگوریتم k-NN برای برآورد استفاده شده و بعد محلی هر خوشه به دست می آید.
الگوریتم پیشنهادی:
معمولا کل تصویر را به بلوکهای کوچک تقسیم بندی می کنند و سپس هر دو بلوک را بر اساس معیار تقریبی در کل تصویر مقایسه می کنند. منطقه ی نبع و هدف از تصویر جعلی باید بافت مشابه داشته باشند. در ابتدا پیش پردازش را داریم که در آن تقسیم بندی تصویر با استفاده از برآورد ابعاد محلی انجام می شود و سپس بافت مناطق منبع و هدف را مطابقت می دهیم. طرح پیشنهادی به صورت زیر است:
1) پیش پردازش: تقسیم بندی تصویر با استفاده از برآورد ابعاد محلی انجام می گیرد. یک تصویر دیجیتال از چندین بافت تشکیل شده، در یک تصویر جعلی باید همان بافت باشد(در طرح پیشنهادی تصویر جعلی با استفاده از برآورد ابعاد محلی تقسیم می شود).
2) الگوریتم تشخیص جعل بر اساس ارزیابی ابعاد محلی: روش پیشنهادی تنها شباهت بلوک ها را در همان بافت مقایسه می کند.
در کل سهم روش پیشنهادی عبارتند از :
اول: تشخیص کپی-انتقال در بلوک های تصویر با بافت مشابه انجام می گیرد به جای اینکه در کل تصویر انجام شود.
دوم: از ابعاد برآورد ابعاد محلی استفاده می کند تا بلوک مرکزی منطقه ی منبع و هدف را تعیین کند.
نتایج تجربی نشان دهنده ی اثربخشی و دقت تشخیص طرح پیشنهادی است.
منبع
دانلود مقاله Copy-Move Forgery Detection
One of the principal problems in image forensics is determining if a particular image is authentic or not. This can be a crucial task when images are used as basic evidence to influence judgment like, for example, in a court of law. To carry out such forensic analysis, various technological instruments have been developed in the literature. In this paper the problem of detecting if an image has been forged is investigated; in particular, attention has been paid to the case in which an area of an image is copied and then pasted onto another zone to create a duplication or to cancel something that was awkward. Generally, to adapt the image patch to the new context a geometric transformation is needed. To detect such modifications, a novel methodology based on Scale Invariant Features Transform (SIFT) is proposed
یکی از مشکلات اصلی در زمینه پزشکی قانونی تعیین این است که آیا یک تصویر خاص معتبر است یا خیر. این
امر می تواند یک وظیفه حیاتی باشد که تصاویر به عنوان شواهد اساسی برای
تأثیرگذاری بر قضاوت مانند دادگاه مورد استفاده قرار می
گیرند.
در این مقاله مسئله تشخیص اینکه آیا یک تصویر جعلی شده است بررسی شده. به
ویژه توجه به موردی است که در آن یک منطقه از یک تصویر کپی می شود و سپس
در یک منطقه دیگر قرار می گیرد تا یک تکرار ایجاد شود یا چیزی که ناخوشایند است
را لغو کند. به طور کلی، برای تطبیق تکه تصویر به زمینه جدید، یک تبدیل هندسی لازم است. برای شناسایی چنین تغییراتی، یک روش جدید بر مبنای تبدیل ویژگی های مقیاس پذیر (SIFT) پیشنهاد شده است.
در این مقاله روش پیشنهادی میتواند دستیابی پیدا کند به مناطقی که دستکاری کپی-انتقال شده اند، و همچنین پارامترهای استفاده شده تبدیلات افقی و عمودی، مقیاس بزرگنمایی، زاویه چرخش را برآورد کند. هنگامی که این نقطه های کلیدی شناسایی می شوند و جهت های کانونی تعیین می شوند، توصیفگرهای SIFT در مکان های خود در هر دو تصویر و مقیاس فضا محاسبه می شوند.
الگوریتم SIFT دو گام دارد اولین گام تشخیص است که، در آن نقاط مورد نظر محلی می شوند، در حالی که در
مرحله دوم، توصیفگرهای محلی قوی به گونه ای ساخته می شوند که با توجه به
جهت گیری، مقیاس و تحولات وابسته غیر قابل تغییر باشد.
این روش می تواند تقریبا به عنوان چهار مرحله زیر خلاصه شود:
منبع:
دانلود مقاله ی A SIFT-Based Forensic Method for Copy–Move